Search results for "Quantum gravity"
showing 10 items of 126 documents
Free Fields for Chiral 2D Dilaton Gravity
1998
We give an explicit canonical transformation which transforms a generic chiral 2D dilaton gravity model into a free field theory.
Dynamic transition to spontaneous scalarization in boson stars
2010
We show that the phenomenon of spontaneous scalarization predicted in neutron stars within the framework of scalar-tensor tensor theories of gravity, also takes place in boson stars without including a self-interaction term for the boson field (other than the mass term), contrary to what was claimed before. The analysis is performed in the physical (Jordan) frame and is based on a 3+1 decomposition of spacetime assuming spherical symmetry.
CHIRAL ANOMALY IN ASHTEKAR'S APPROACH TO CANONICAL GRAVITY
1998
The Dirac equation in Riemann–Cartan spacetimes with torsion is reconsidered. As is well-known, only the axial covector torsion A, a one-form, couples to massive Dirac fields. Using diagrammatic techniques, we show that besides the familiar Riemannian term only the Pontrjagin type four-form dA ∧ dA does arise additionally in the chiral anomaly, but not the Nieh–Yan term d* A, as has been claimed recently. Implications for cosmic strings in Einstein–Cartan theory as well as for Ashtekar's canonical approach to quantum gravity are discussed.
Quantum gravity with THESEUS
2021
AbstractIn this paper we explore the possibility to search for a dispersion law for light propagation in vacuo with a sample of Gamma-Ray Bursts detected by the THESEUS satellite. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that (in a series expansion) depend on a given power of the ratio of the photon energy to the Planck energy. This ratio is as small as 10− 23 for photons in the soft γ −ray band (100 keV). The dominant effect is determined by the first significant term of this expansion. If the first order in this expansion is relevant, these theories imply a Lorentz Invaria…
Depletion in Bose-Einstein condensates using quantum field theory in curved space
2007
5 pages.-- PACS nrs.: 03.75.Kk; 05.30.Jp; 04.62.+v; 04.70.Dy.-- ISI Article Identifier: 000246074600122.-- ArXiv pre-print available at: http://arxiv.org/abs/cond-mat/0610367
On CPT Symmetry: Cosmological, Quantum-Gravitational and Other Possible Violations and Their Phenomenology
2004
I discuss various ways in which CPT symmetry may be violated, and their phenomenology in current or immediate future experimental facilities, both terrestrial and astrophysical. Specifically, I discuss first violations of CPT symmetry due to the impossibility of defining a scattering matrix as a consequence of the existence of microscopic or macroscopic space-time boundaries, such as Planck-scale Black-Hole (event) horizons, or cosmological horizons due to the presence of a (positive) cosmological constant in the Universe. Second, I discuss CPT violation due to breaking of Lorentz symmetry, which may characterize certain approaches to quantum gravity, and third, I describe models of CPT non…
Matter, quantum gravity, and adiabatic phase
1990
Based on the observation that particle masses are much smaller than the Planck mass, a framework for the matter-gravity system in which matter follows gravitation adiabatically is examined in a path-integral approach. It is found that the equations that the resulting gravitational wave function satisfies involve, in addition to the expectation value of the matter stress tensor, an adiabatically induced gauge field which can lead to interesting topological structures in superspace. Such a non-trivial geometric contribution modifies the semiclassical quantization condition and can change the conserved quantities associated with the symmetries of the system. © 1990 The American Physical Societ…
Fractal geometry of higher derivative gravity
2019
We determine the scaling properties of geometric operators such as lengths, areas, and volumes in models of higher derivative quantum gravity by renormalizing appropriate composite operators. We use these results to deduce the fractal dimensions of such hypersurfaces embedded in a quantum spacetime at very small distances.
Probing Planck scale physics with IceCube
2005
Neutrino oscillations can be affected by decoherence induced e.g. by Planck scale suppressed interactions with the space-time foam predicted in some approaches to quantum gravity. We study the prospects for observing such effects at IceCube, using the likely flux of TeV antineutrinos from the Cygnus spiral arm. We formulate the statistical analysis for evaluating the sensitivity to quantum decoherence in the presence of the background from atmospheric neutrinos, as well as from plausible cosmic neutrino sources. We demonstrate that IceCube will improve the sensitivity to decoherence effects of ${\cal O}(E^2/M_{\rm Pl})$ by 17 orders of magnitude over present limits and, moreover, that it ca…
Entropy Production during Asymptotically Safe Inflation
2011
The Asymptotic Safety scenario predicts that the deep ultraviolet of Quantum Einstein Gravity is governed by a nontrivial renormalization group fixed point. Analyzing its implications for cosmology using renormalization group improved Einstein equations we find that it can give rise to a phase of inflationary expansion in the early Universe. Inflation is a pure quantum effect here and requires no inflaton field. It is driven by the cosmological constant and ends automatically when the renormalization group evolution has reduced the vacuum energy to the level of the matter energy density. The quantum gravity effects also provide a natural mechanism for the generation of entropy. It could eas…